今天来聊聊关于二元一次方程组应用题及答案100道,二元一次方程组应用题及答案的文章,现在就为大家来简单介绍下二元一次方程组应用题及答案100道,二元一次方程组应用题及答案,希望对各位小伙伴们有所帮助。
1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成.问:甲乙两队原计划各修多少千米?设甲乙原来的速度每天各修a千米,b千米根据题意(a+b)×50=200(1)10×(a+0.6)+40a+30b+10×(b+0.4)=200(2)化简a+b=4(3)a+0.6+4a+3b+b+0.4=205a+4b=19(4)(4)-(3)×4a=19-4×4=3千米b=4-3=1千米甲每天修3千米,乙每天修1千米 甲原计划修3×50=150千米乙原计划修1×50=50千米2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元.求自动笔的单价,和钢笔的单价.设自动铅笔X元一支 钢笔Y元一支4X+2Y=14X+2Y=11解得X=1Y=5则自动铅笔单价1元钢笔单价5元3.有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问每种各需多少克?答案:浓度为60%的200g,浓度为90%的100g4.学校新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.(1)平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.答案;(1)一道正门每分钟通过120名学生,一道侧门每分钟通过80名学生(2)符合安全规定:四道门五分钟内可以通过1600名学生,而这栋教学楼最多有1440名学生 5用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?分析:因为现在总有36张铁皮制盒身和盒底.所以x+y=36.公式;用制盒身的张数+用制盒底的张数=总共制成罐头盒的白铁皮的张数36.得出方程(1).又因为现在一个盒身与2个盒底配成一套罐头盒.所以;盒身的个数*2=盒底的个数.这样就能使它们个数相等.得出方程(2)2*16x=40y x+y=36 (1) 2*16x=40y (2) 由(1)得36-y=x (3) 将(3)代入(2)得; 32(36-y)=40y y=16 又y=16代入(1)得:x=20 所以;x=20 y=16 6汽车在相距70千米的甲、乙两地行驶,因为行程中,有一坡度均匀的小山,该汽车从甲到乙,需要2小时30分钟,而从乙回到甲需要2小时36分钟,已知汽车平地每小时行30千米,上坡路每小时行20千米,下坡路每小时行40千米,求从甲到乙的行程中,平路、上坡路、下坡路各是多少?2小时30分=2.5小时,2小时36分=2.6小时设从甲到乙上坡路为a千米,下坡路为b千米a/20+b/40+(70-a-b)/30=2.5(1)a/40+b/20+(70-a-b)/30=2.6(2)(2)-(1)b/40-a/40=1/10b-a=4b=a+4代入(1)a/20+(a+4)/40+(70-2a-4)/30=2.56a+3a+12+264-8a=300a=24千米b=24+4=28千米平地距离70-24-28=18千米所以从甲到乙上坡24千米,下坡28千米,平路18千米答:用20张制盒身,用16制盒底. 2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元.求自动笔的单价,和钢笔的单价.设自动铅笔X元一支 钢笔Y元一支4X+2Y=14X+2Y=11解得X=1Y=5则自动铅笔单价1元钢笔单价5元3、据统计2009年某地区建筑商出售商品房后的利润率为25%.(1)2009年该地区一套总售价为60万元的商品房,成本是多少?(2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润.(1)成本=60/(1+25%)=48万元(2)设2010年60万元购买b平方米2010年的商品房成本=60/(1+1/3)=45万60/b-2a=60/(b+20)(1)45/b-a=48/(b+20)(2)(2)×2-(1)30/b=36/(b+20)5b+100=6bb=100平方米2010年每平方米的房价=600000/100=6000元利润=6000-6000/(1+1/3)=1500元4、某商店电器柜第一季度按原定价(成本+利润)出售A种电器若干件,平均每件获得百分之25的利润.第二季度因利润略有调高,卖出A种电器的件数只有第一季度卖出A种电器的6分之5,但获得的总利润却与第一季度相同.(1)求这个柜台第二季度卖出A种电器平均每件获利润百分之几?(2)该柜台第三季度按第一季度定价的百分之90出售A种电器,结果卖出的件数比第一季度增加了1.5倍,求第三季度出售的A种电器的利润比第一季度出售的A种电器的总利润增加百分之几? (1)设成本为a,卖出件数为b,第二季度利润率为c那么利润=a×25%=1/4a第二季度卖出电器5/6b件第一季度的总利润=1/4ab第二季度利润=ac×5/6b=5/6abc根据题意1/4ab=5/6abcc=1/4×6/5c=3/10=30%(2)第一季度定价=a(1+25%)=5/4a第三季度定价=5/4a×90%=9/8a第三季度卖出(1.5+1)b=2.5b件第三季度的总利润=9/8a×2.5b-2.5ab=5/16ab第三季度比第一季度总利润增加(5/16ab-1/4ab)/(1/4ab)=(1/16)/(1/4)=0.25=25%5、将若干只鸡放入若干个笼中.若每个笼中放4只,则有一只鸡无笼可放;若每个笼中放5只,则恰有一笼无鸡可放,那么,鸡、笼各多少?设鸡有x只,笼有y个4y+1=x5(y-1)=x得到x=25,y=66、用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?分析:因为现在总有36张铁皮制盒身和盒底.所以x+y=36.公式;用制盒身的张数+用制盒底的张数=总共制成罐头盒的白铁皮的张数36.得出方程(1).又因为现在一个盒身与2个盒底配成一套罐头盒.所以;盒身的个数*2=盒底的个数.这样就能使它们个数相等.得出方程(2)2*16x=40y x+y=36 (1) 2*25x=40y (2) 由(1)得36-y=x (3) 将(3)代入(2)得; 50(36-y)=40y y=20又y=20代入(1)得:x=16所以;x=16 y=20答:用16张制盒身,用20制盒底.用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒与2个盒底配成一套罐头盒.现有225张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒? x张做盒身,y张做盒底x+y=225(1) 2×16x=43y (2) 由(1)得225-y=x (3) 将(3)代入(2)得; 32(225-y)=43y 7200-32y=43y75y=7200y=96 又y=16代入(1)得:x=225-96=129所以;x=129y=96或者设x张盒身,225-x张盒底2×16x=43×(225-x)32x=9675-43x75x=9675x=129答:用129张制盒身,用96制盒底. 7、现在父母年龄的和是子女年龄的6倍;2年前,父母年龄的和子女年龄的和是子女年龄的和的10倍;父母年龄的和是子女年龄的3倍.问:共有子女几日?父母年龄之和为X 子女年龄之和为Y 设有N个子女 X=6Y(X-4)=10(Y-n*2)6Y-4=10Y-20N4Y=20N-4Y=5N-1(X+12)=3(Y+n*6)6Y+12=3Y+18N3Y=18N-12Y=6N-4 6N-4=5N-1N=3 答:有3个子女 8、甲,乙两人分别从A、B两地同时相向出发,在甲超过中点50千米处甲、乙两人第一次相遇,甲、乙到达B、A两地后立即返身往回走,结果甲、乙两人在距A地100米处第二次相遇,求A、B两地的距离 甲、乙两人从A地出发到B地,甲不行、乙骑车.若甲走6千米,则在乙出发45分钟后两人同时到达B地;若甲先走1小诗,则乙出发后半小时追上甲,求A、B两地的距离.设甲的速度为a千米/小时,乙的速度为b千米/小时45分钟=3/4小时6+3/4a=3/4ba=(b-a)x1/2化简b-a=8(1)3a=b(2)(1)+(2)2a=8a=4千米/小时b=3x4=12千米/小时AB距离=12x3/4=9千米 9、工厂与A.B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000的产品运到B地.已知公路运价为1.5元/ (吨、千米),铁路运价为1.2元/(吨、千米),且这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和为多少元? A型单价11分,B型9分 1已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从一开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度? 设火车的速度为a米/秒,车身长为b米1分钟=60秒60a=1000+b40a=1000-b在某校举办的足球赛中规定:胜一场得3分,平一场得1分,负一场得0分.九年级三班足球队参加了12场比赛,已知这个球队只输了2场,那么这支足球队胜了几场?平了几场?设胜x场,平y场,x+y=12-2(1);3x+y=22(2).解之得:x=6,y=4 1 用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?2 现在父母年龄的和是子女年龄的6倍;2年前,父母年龄的和子女年龄的和是子女年龄的和的10倍;父母年龄的和是子女年龄的3倍.问:共有子女几个?3 甲,乙两人分别从A、A两地同时相向出发,在甲超过中点50千米处甲、乙两人第一次相遇,甲、乙到达B、A两地后立即返身往回走,结果甲、乙两人在距A地100米处第二次相遇,求A、B两地的距离 4 工厂与A.B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000的产品运到B地.已知公路运价为1.5元/ (吨、千米),铁路运价为1.2元/(吨、千米),且这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和为多少元?5 张栋同学到百货大楼买了两种型号的信封,共30个,其中买A型号的信封用了1元5角,买B型号的信封用了1元5角,B型号的信封每个比A型号的信封便宜2分.两种型号的信封的单价各是多少?6 已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从一开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度? 7 一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛? 8 某厂买进甲、乙两种材料共56吨,用去9860元.若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?9 种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角.3种包装的饮料每瓶各多少元?10 一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.。
相信通过二元一次方程组应用题及答案这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。