今天来聊聊关于tansincos是什么边比什么边,tansincos关系的文章,现在就为大家来简单介绍下tansincos是什么边比什么边,tansincos关系,希望对各位小伙伴们有所帮助。
1、倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商数关系 tanα=sinα/cosα cotα=cosα/sinα 平方关系 sinα²+cosα²=1 1+tanα²=secα² 1+cotα²=cscα² 以下关系,函数名不变,符号看象限 sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 以下关系。
2、奇变偶不变,符号看象限 sin(90°-α)=cosα cos(90°-α)=sinα tan(90°-α)=cotα cot(90°-α)=tanα sin(90°+α)=cosα cos(90°+α)=sinα tan(90°+α)=-cotα cot(90°+α)=-tanα sin(270°-α)=-cosα cos(270°-α)=-sinα tan(270°-α)=cotα cot(270°-α)=tanα sin(270°+α)=-cosα cos(270°+α)=sinα tan(270°+α)=-cotα cot(270°+α)=-tanα 积化和差公式 sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)] cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)] cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)] sinα ·sinβ=(1/2)*[cos(α+β)-cos(α-β)] 和差化积公式 sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2] sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2] cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2] cosα-cosβ=-22*[sin(α+β)/2]*[sin(α-β)/2] 三倍角公式 sin3α=3sinα-4sinα³ cos3α=4cosα³-3cosα 两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)==(tanα+tanβ )/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ )/(1+tanα ·tanβ)。
相信通过tansincos关系这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。